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Chapter 1

Introduction to Research Field

1.1 Presentation of the field of the doctoral thesis

The echo cancellation is one of the most interesting applications of signal processing.
Even if its cause is due to the coupling between the speaker and the microphone of a real
device (i.e., acoustic echo), or it is obtained due to a mismatch in an electrical circuit (i.e.,
line echo), reflecting back to the source a part of the signal, one of the main solutions to
cancel it is based on the system identification framework. In the system identification
framework, the principle is to identify a system as close as possible to the system that
produces the echo signal. Therefore, even though the real system contributes to the echo
or maybe the acoustics of the environment affects in one way or another the echo (i.e., in
acoustic echo cancellation), an estimate as accurate as possible should be obtained so
that in the end, the echo is eliminated. Definitely, the system that must be identified can
change in time, and because of this, the algorithm used for system identification is an
adaptive algorithm that is able to track unpredictable behaviors.

The literature provides many adaptive algorithms, and even if their adaptive character
should cope successfully with any situation, each of them is more efficient in certain sce-
narios with more or less computational complexity. Some of them are purely theoretical
concepts used to derive state-of-the-art benchmarks and represent paths to new research.

There are also systems that present a high complexity, or by their nature produce
other effects such as reverberation, delays, or nonlinearities. Different techniques were
studied in the past years, but there is no single solution agreed upon, while it depends on
the application and the effects that should be eliminated or reduced. Even the effects
themselves can be of several types, which makes it difficult to find a single solution.
However, a widespread approach is based on a multilinear system that combines either
parallel or cascaded linear or non-linear adaptive filters [16].



1.2 Scope of the doctoral thesis

The purpose of the thesis is to develop new algorithms or improved variants of the
existing ones for the identification of unknown systems through adaptive filters which
overcome the existing solutions and aim real-time applications. Moreover, the thesis
develops optimization methods that improve the overall performance of the adaptive
algorithms. In the end, solutions for multi-path signals (e.g., the reverberation effect) that
can occur in practical applications are developed, aiming to reduce the computational
complexity of the rudimentary algorithms.

1.3 Content of the doctoral thesis

The thesis contains four main chapters and a final one that comprehends a summary of
the thesis, the list of contributions, and future perspectives for research and development.
The first chapter of the four main chapters consists of a short introduction to the theory
of the adaptive algorithms which were used as starting point for the research of this
thesis. Further, the other three main chapters represent the main contributions of the
thesis and introduce the theoretical development along with experimental results and
conclusions. The results are depicted in each contribution chapter to facilitate a better
structure and view of the context. Further, the content of the chapters is summarized.

In chapter 2, we introduce some of the most popular adaptive algorithms. In Chapter
3, we propose two new algorithms, which follow an optimization criterion that is more
practical for real-world applications. For each algorithm, we have developed an extension
for a particular use case, i.e., when the input signal is considered white Gaussian noise.

Next, in Chapter 4, by using the data-reuse technique we aimed to improve the
performance of one of the algorithms developed in Chapter 3 and maintain its linear
computational complexity. Then, we have analyzed the data-reuse from a different
perspective and developed a method to generate the fixed step-sizes of the NLMS
algorithm and APA, so that we have obtained two new variable step-size algorithms.

Further, through Chapter 5 we introduce multiple structures without and with memory
in the context of a multiple-input/single-output system. By developing these structures,
we have obtained a way of splitting a long length filter into a cascade of shorter length
filters, which form a single-input/single-output (SISO) system. Then, we have presented
two approaches to using the input data to facilitate two contexts for the identification of
linear and multilinear systems.

Finally, because the conclusions were presented in each chapter, in Chapter 6 we
only summarize the main results. Also, we outline the main contributions and some
perspectives for future research and development.

2



Chapter 2

Introduction to Adaptive Algorithms

This chapter represents a walkthrough of some of the most popular adaptive algorithms
in the literature, which supported the research and development of the novel ideas and
algorithms in this thesis.

2.1 System Model

In the system identification framework, the configuration represented in Fig. 2.1 is used.
In this setup, x(n) represents the input signal at the discrete-time index n, while y(n) is
the output of the system that must be determined (i.e., h).

By filtering the input signal through both systems, we can write ŷ(n) = ĥT (n−1)x(n)
and y(n) = hT x(n), where x(n) is a vector containing the L most recent input samples.

In the end, the output of the adaptive system is subtracted from the desired signal, so
that the error signal e(n) results as e(n) = d(n)− ŷ(n).

Fig. 2.1 System model.

2.2 Least-Mean-Square (LMS) Algorithm

The Wiener filter facilitated the development of one of the most popular adaptive algo-
rithms, the LMS algorithm. The popularity of the LMS algorithm is due to its ease of



understanding, implementing, and use of it. In the beginning, the Wiener filter aimed to
determine an optimal filter, ĥW, that minimizes the error signal in each iteration.

In this context, the optimal filter that minimizes the error signal is identified by
minimizing a cost function, the mean-square error (MSE), defined as J[ĥ(n)] = E[e2(n)],
where E[·] represents the statistical expectation. After several computations the optimal
Wiener filter is obtained as ĥW = R−1

x pxd .
The computation of the cross-correlation vector pxd and the correlation matrix Rx,

imply knowledge of statistical estimates, making the steepest-decent algorithm unsuitable
for practical use. If we consider the instantaneous values of pxd and Rx as

pxd(n) = d(n)x(n), Rx(n) = x(n)xT (n), (2.16)

the following equation results

ĥ(n) = ĥ(n−1)+2µx(n)e(n), (2.17)

which defines the update equation of the LMS algorithm.

2.3 Normalized LMS Algorithm

In order to provide a higher degree of freedom, a good choice is to have a time dependent
step-size. A first possibility is to normalize the step-size µ by the instantaneous estimate
of the input signal and the equation (2.17) can be rewritten as

ĥ(n) = ĥ(n−1)+
µ

xT (n)x(n)
x(n)e(n). (2.20)

Equation (2.20) defines the update equation of the NLMS algorithm.

2.4 Affine Projection Algorithm (APA)

The APA comes as an extension of the NLMS algorithm. While the LMS and NLMS
algorithms are running on a single input vector, the APA is handling multiple input
vectors through the input matrix X(n). The update equation of the APA is

ĥ(n) = ĥ(n−1)+µX(n)[XT (n)X(n)+δ IP]
−1e(n), (2.30)

where IP is the identity matrix of size P×P.
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2.5 Recursive Least-Squares (RLS) Algorithm

The RLS algorithm represents an important reference in adaptive filtering theory due to
its high performance and robustness. This time, the statistical averages are replaced by
the weighted sum of square temporal values. Thus, the cost function, instead of the MSE
is replaced by the least-squares (LS) cost function, defined as

J[ĥ(n)] =
n

∑
k=1

λ
n−k

ε
2(k), (2.31)

for which, ε(k) denotes the aposteriori error signal, with ε(k) = d(k)− ĥ(n)x(k).
The development of the cost function results in the following recursive equation for

the optimal filter

ĥ(n) = ĥ(n−1)+k(n)e(n), (2.45)

where k(n) denotes the Kalman gain defined as

k(n) =
Rx

−1(n−1)x(n)
λ +xT (n)Rx

−1(n−1)x(n)
. (2.46)

2.6 Peformance Metrics

When measuring the performance of an adaptive algorithm, we refer to three main
characteristics: the initial convergence rate, the misadjustment of the coefficients, and
the tracking capability. The convergence rate describes how fast the coefficients of
the unknown system are determined or how fast the steady-state is reached, while the
misadjustment indicates how close the estimated solution is to the real coefficients.
However, in some cases the unknown system can vary or completely change (especially
in acoustic echo cancellation scenarios) and through the tracking capability we analyze
how fast the adaptive algorithm is able to determine the coefficients of the new system.
All these characteristics can be analyzed through the normalized misalignment (NM),
defined as

NM(n) = 10log10

∣∣∣∣h− ĥ(n)
∣∣∣∣2

2

||h||22
(dB). (2.47)

When the estimated coefficients (i.e., ĥ(n)) are close to the real coefficients (i.e., h), the
nominator of the NM tends to zero and the ratio as well. By this, we can remark that the
logarithm values go to minus infinity.
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Chapter 3

Optimized LMS Algorithms

This chapter introduces the first contribution to this thesis, representing two LMS-based
algorithms with variable step-size. The literature is rich based on this subject, proposing
different solutions, in general, based on heuristic considerations. Beggining with [15], a
long series of algorithms appeared under the name of “proportionate algorithms” [29],
[20], [18]. However, the development principle that stands behind the LMS algorithm
(i.e., the minimization of the MSE cost function) is not so practical in the context of echo
cancellation, while in real life applications we would like to obtain a better estimate of
the echo signal, which means a smaller misalignment between the estimated impulse
response, ĥ(n), and the unknown impulse response, h(n). The work of this chapter has
been published in [6] and [9].

3.1 Design Principle

In this framework, we consider the unknown system, h(n), is changing dynamically and
is described by a first-order Markov model [14][17], characterized by the noise δ h(n).

The first step in this development is to replace the fixed step-size in the update
equation of the LMS algorithm with a control matrix, Y(n). We can remark that Y(n)
matrix could be, a scaled unit matrix, leading to a variable step-size LMS algorithm, a di-
agonal matrix, leading to an algorithm with a differential step-size, or an arbitrary matrix.
We define the autocorrelation matrix of the coefficients error as Rc(n), E[c(n)cT (n)],
where c(n) = ĥ(n)−h(n), denotes the aposteriori misalignment. Furthermore, we denote
Γ(n), Rc(n)+σ2

hIL, where σ2
h = E[δ 2

h (n)] represents the variance of the system noise,
δ h(n).

3.2 The Optimized LMS (LMSO) Algorithm

In this development, we consider the first of the three cases presented in the previous
subchapter, where Y(n) is a scaled unit matrix, so that Y(n) = µ(n)IL.



3.2.1 Autocorrelation Matrix of the Coefficients Error

Starting with the substituion of the aposteriori misalignment in the autocorrelation matrix
of the coefficients error and developing it, the following result is obtained

Rc(n) = Γ(n−1)−µ(n)[Γ(n−1)Rx +RxΓ(n−1)]

+µ
2(n)

{
2RxΓ(n−1)Rx +Rxtr[Γ(n−1)Rx]

}
+µ

2(n)σ2
wRx. (3.13)

3.2.2 Optimum Step-Size Derivation

The optimum step-size is obtained by computing the minimum of MSD (i.e., m(n),
E[∥c(n)∥2

2] = tr[Rc(n)]) and we obtain

µ(n) =
tr[Γ(n−1)Rx]

tr{Γ(n−1)Rx[Lσ2
x IL +2Rx]}+Lσ2

x σ2
w
. (3.31)

When the input signal is white Gaussian noise, the optimum step-size can be written as

µo(n) =
mo(n−1)+Lσ2

h
σ2

x [mo(n−1)+Lσ2
h ](L+2)+Lσ2

w
. (3.34)

We can conclude that we have obtained two algorithms, the first one that is based on
the general equation (3.31) called least-mean-square optimized “general” (LMSO-G)
algorithm, and the second one that is based on the simplified equation (3.34) called
least-mean-square optimized “white” (LMSO-W) algorithm.

3.2.3 Experimental Results

The simulations were performed in the context of acoustic echo cancellation. We can
remark in Figure 3.6 that the σ2

h parameter plays an important role in governing the
performance of the LMSO-G and LMSO-W algorithms. With respect to the tracking
capability, a small value of σ2

h inhibits the re-convergence when the echo path changes,
while a higher value enables the algorithms to determine the new system in a reasonable
time.

3.3 The Optimized Differential Step-Size LMS (ODSS-
LMS) Algorithm

In this development, we consider the second case of the three presented in Section 3.1
with the step-size Y(n) = matdiag[y(n)], where matdiag(·) denotes a diagonal matrix,
having on the main diagonal the elements of the vector y(n), leading to a differential or
proportionate step-size.
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Fig. 3.6 Normalized misalignment of the LMSO-W and LMSO-G algorithms for different
constant values of σ2

h . The input signal is a speech sequence and SNR = 30dB.

3.3.1 Autocorrelation Matrix of the Coefficients Error

Proceeding in the same manner as in the previous section, the autocorrelation matrix of
coefficients error results

Rc(n) = Γ(n−1)−Γ(n−1)RxY(n)−Y(n)RxΓ(n−1)

+Y(n){2RxΓ(n−1)Rx +Rxtr[Γ(n−1)Rx]}Y(n)+Y(n)RxY(n)σ2
w. (3.41)

3.3.2 Optimum Step-Size Vector Derivation

Onwards, we obtain the optimum step-size by computing the gradient of MSD with
respect to y(n), having the solution:

yo(n) =
{

σ
2
x IL{tr[Γ(n−1)Rx]+σ

2
w}+2matdiag[RxΓ(n−1)Rx]

}−1

×diag[RxΓ(n−1)]. (3.52)

Again, if we consider that the input signal is white Gaussian noise and Rx = σ2
x IL, we

obtain the following result for step-size

yo(n) =
{

σ
2
x IL[m(n−1)+σ

2
h(L+2)]+2σ

2
x matdiag[Rc(n−1)]+σ

2
wIL

}−1
γ(n−1),

(3.55)

with γ(n), diag[Γ(n)].
At this point, we can conclude that we have obtained two algorithms, the first

one conducted by equation (3.52) called optimized differentiate least-mean-square
“general” (ODSS-LMS-G) algorithm and the second one based on equation (3.55) called
optimized differentiate least-mean-square “white” (ODSS-LMS-W).

8



3.3.3 Experimental Results

Fig. 3.14 highlights that both ODSS-LMS algorithms outperform the JO-NLMS [27]
and IPNLMS [20] algorithms in terms of normalized misalignment level. We can remark
the good performance of the ODSS-LMS-W algorithm which achieves a normalized
misalignment level of −30dB in less than 1 second.

Fig. 3.14 Normalized misalignment of the IPNLMS, JO-NLMS, ODSS-LMS-G, and
ODSS-LMS-W algorithms. The input signal is a speech sequence. The unknown system
is the network echo path.

3.4 Practical Considerations

Across the development of both LMSO and ODSS-LMS algorithms, we have introduced
parameters that must be estimated when we deal with real-time applications. The first one
is the power of the input signal, σ2

x , which can be easily estimated as σ2
x = 1

LxT (n)x(n),
or through a 1-pole exponential filter. Then, the autocorrelation matrix of the input signal
can be estimated through a weighting window R̃x(n) = λ R̃x(n−1)+(1−λ )x(n)xT (n),
where λ denotes the forgetting factor. If the power of the σ2

w noise is not known, it
should be estimated as well, and for this, we can refer to [13], [25].

3.5 Computational Complexity Analysis

The overall computational complexity of the developed algorithms is summarized in
Table 3.1 and Table 3.2.

3.6 Summary and Conclusions

Using the LMS algorithm as starting point and considering the minimization of the MSD
as cost function, we have developed the LMSO-G and ODSS-LMS-G algorithms. Based

9



Table 3.1 Computational complexity comparison between LMS and LMSO algorithms

Operation
Algorithm

LMS LMSO-G LMSO-W

Multiplications 2L+1 4L3 +7L2 +2L+4 2L+7
Additions 2L 2L3 +2L2 +3L2(L−1)+5L 2L+3
Divisions 0 1 1

Table 3.2 Computational complexity comparison between LMS and ODSS-LMS algo-
rithms

Operation
Algorithm

LMS ODSS-LMS-G ODSS-LMS-W

Multiplications 2L+1 3L3 +2L2 +16L 10L+3
Additions 2L 3L3 −2L2 +9L 10L+1
Divisions 0 L L

on a particular use case (i.e., considering that the input signal is white Gaussian noise),
we have obtained the simplified versions, the LMSO-W and ODSS-LMS-W algorithms.
The general versions, LMSO-G and ODSS-LMS-G, present a computational complexity
of O(L3), while the simplified verions, LMSO-W and ODSS-LMS-W, are characterized
by a linear computational complexity (i.e., O(L)).

As the simulations state, the LMSO-G and ODSS-LMS-G algorithms are robust when
handling correlated input signals and present good performance in terms of convergence
rate, normalized misalignment, and tracking capability. However, due to the high
computational complexity, they are more suitable for benchmarking instead of practical
use. Even if the simplified versions were developed considering white Gaussian signal
as input, the simulation highlighted their good performances even when the input signal
is correlated. Of course, we have remarked a drawback in performance for the LMSO-W
and ODSS-LMS-W algorithms compared to their counterparts LMSO-G and ODSS-
LMS-G algorithms, but we have obtained a big reduction in computational complexity
instead. Thus, we can outline that the LMSO-W and ODSS-LMS-W algorithms are
good candidates for real-time applications.

Also, the ODSS-LMS type algorithms have the benefit of the differentiate step-
size, making them a good choice when the echo path is sparser. A new parameter
was introduced, σ2

h , and the simulations presented its importance. According to the
simulations, the σ2

h parameter should be tuned so that to achieve a good compromise
between low normalized misalignment level and tracking capability.

10



Chapter 4

Data-Reuse based Algorithms

4.1 Baseline Concept

Initially, this method was introduced in [10]. The data-reuse method implies the update
of the coefficients at each time index, considering M data samples from the past, where
M denotes the data-reuse order.

4.2 Data-Reuse LMSO (LMSO-DR) Algorithm

In the previous chapter, we introduced the LMSO-G and LMSO-W algorithms. We have
noticed a drastic reduction in terms of the computational complexity for the LMSO-W
algorithm (i.e, O(L) compared to O(L3) for the LMSO-G algorithm), which impacted
the overall performance. By using a more robust data-reuse method as in [12], we
would like to achieve the performance of the LMSO-G algorithm by keeping the linear
computational complexity.

4.2.1 Algorithm Development

Considering the LMSO-W algorithm, we can apply the data-reuse method and develop
the data-reuse LMSO-W (LMSO-W-DR) algorithm.

We would like to obtain an equation that updates the filter’s coefficients in one step,
so that to avoid the M iterations. Therefore, considering [12] as a reference, we can start
substituing the equations from the first iteration in the equations of the second iteration,
and following this procedure until the Mth data-reuse order, two equivalent equations
result

e(n) = d(n)−XT (n)ĥ(n−1), (4.15)

ĥ(n) = ĥ(n−1)+X(n)Z(n)e(n), (4.16)



where Z(n) is the step-size matrix defined as Z(n) = K−1(n)S(n), with S(n), a diagonal
M×M matrix, built with the step-size of the LMSO-W algorithm. It can be noticed that
K(n) term opens a connection with the APA [22].

4.2.2 Experimental Results

The system to be identified is the acoustic echo path. In Fig. 4.2 the input signal is an
AR(1) process with β = 0.9 and the echo path changes in the middle of the simulation.
We analyze the impact of the data-reuse order on the convergence rate. As expected, a
higher data-reuse order, i.e., M = 4, improves the convergence rate and in this case, the
LMSO-W-DR algorithm is even faster than the LMSO-G algorithm. It can be remarked
that using the smallest data-reuse order, i.e, M = 2, the convergence rate is faster than
that of the LMSO-G algorithm.

Fig. 4.2 Normalized misalignment of the LMSO-W-DR, LMSO-W, LMSO-G, and
NLMS-DR algorithms. For the LMSO type algorithms the constant value is set σ2

h =
1e− 11, while for the NLMS-DR algorithm µ = 1; the echo path changes at time 5s.
The input signal is an AR(1) process (β = 0.9), L = 512, and SNR = 20dB.

4.3 Variable Step-Size NLMS (VSS-NLMS) Algorithm
based on Data-Reuse

Following the baseline concept introduced in Section 4.1 and considering the NLMS
algorithm presented in Section 2.3 as workhorse, we develop a variable step-size NLMS
(VSS-NLMS) algorithm [3] for which the step-size is governed by a simple set of rules.

4.3.1 Algorithm Development

First of all, let us develop equation (2.20) for each data-reuse iteration as we did for the
LMSO-W-DR algorithm, but taking into account fixed data (e.g., x(n), d(n)) [12], [19],

12



[26], [21], and analyzing the evolution of the step-size µ . By developing the equations
of the NLMS algorithm for each iteration and replacing the equations from the first
iteration in the equation from the second iteration, proceeding in the same manner until
the kth order. Therefore, the update equation in the kth iteration is

ĥk(n) = ĥ(n−1)+
[
1− (1−µ)k+1

] x(n)e(n)
xT (n)x(n)

, (4.30)

with the kth a posteriori error ek(n) = (1−µ)ke(n). In this context, the update equation
of the VSS-NLMS algorithm becomes

ĥ(n) = ĥ(n−1)+
µ(n)

xT (n)x(n)
x(n)e(n). (4.35)

Then, we can generate a set of step-sizes, each of them used for a certain number of
iterations. In order to not stall the algorithm, we can use mechanism that detects changes
in the unknown system, such as [28] and resets the use of the generated step-sizes

4.3.2 Experimental Results

For these simulations we have used the acoustic echo path.
We simulate the VSS-NLMS algorithm in the scenario represented in Fig. 4.15,

where the input signal is speech sequence. In this scenario, the SNR changes after 50
seconds from 20 dB to 10 dB. Initially, the variance σ2

w is considered to be known for
the NPVSS-NLMS algorithm, but not when SNR change occurs. Even if the NPVSS-
NLMS algorithm overcomes the VSS-NLMS algorithm in terms of convergence rate and
normalized misalignment level, the VSS-NLMS algorithm is definitely more robust to
power level changes.

Fig. 4.15 Normalized misalignment of the NLMS algorithm with µ = 1 and µ = 0.03,
normalized misalignment of the NPVSS-NLMS algorithm, and normalized misalignment
of the VSS-NLMS algorithm using l = 0.5 and the lower bound µ = 0.03. The input
signal is speech, L = 512, and the SNR decreases from 20 dB to 10 dB after 50 seconds.
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4.4 Variable Step-Size APA (VSS-APA)

As the APA is an extension of the NLMS algorithm, implementing a projection order
P, it is natural at this point to continue the development of a variable step-size APA
(VSS-APA).

4.4.1 Algorithm Development

Following the procedure from Section 4.3, definitely we can improve the overall perfor-
mance, maintaining the same computational complexity.

Based on the mathematical induction until the kth data-reuse iteration we obtain

ĥk(n) = ĥ(n−1)+ [1− (1−µ)k]X(n)[XT (n)X(n)]−1e(n) (4.50)

and ek(n) = (1−µ)k−1e(n).
At this point, we can design the VSS-APA using the same principle used for the

VSS-NLMS algorithm, by generating a set of step-sizes, each of them used for a certain
number of iterations. A small step-size µ could stall the algorithm to not reacting to any
changes in the unknown system that is identified. For this reason, we can use a detector
[25] that resets the use of the generated step-sizes.

4.4.2 Experimental Results

The unknown system to be determined is represented by the acoustic echo path.
Forwards, the input signal is a speech sequence. In Fig. 4.22, the echo path changes in

the middle of the simulation. Even if the convergence rate of APA with µ = 1 is similar
to that of the VSS-APA, APA presents variations of more than 5 dB in some scenarios.
Also, the VSS-APA continues to achieve a much lower normalized misalignment level
than APA and maintains the good performance after echo path change.

4.5 Summary and Conclusions

In this chapter, starting from the data-reuse approach we have developed three adaptive
algorithms: LMSO-W-DR, VSS-NLMS, and VSS-APA. The LMSO-W-DR algorithm
was developed by optimizing the data-reuse approach and improving the performance
of it compared to its forerunner, i.e., LMSO-W algorithm, presented in Section 4.2.
Our goal was to obtain an algorithm that provides a performance close to that of the
LMSO-G algorithm and the simulations outlined that we have successfully reached this
in terms of convergence rate, tracking, and good estimates. The performance gain of
the LMSO-W-DR algorithm is achieved with a linear computational complexity, that is
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Fig. 4.22 Normalized misalignment of the APA with µ = 1 and µ = 0.01, and normalized
misalignment of the VSS-APA using the step-size µ = 0.01 and l = 0.1, for different
values of the projection order (a) P = 2; (b) P = 4; and (c) P = 8. The input signal is a
speech sequence, L = 512, and SNR = 30 dB.

O(ML), with M ≪ L. Also, the LMSO-W-DR opens a connection with the APA which
can be exploited in future works.

Further, we have used the data-reuse approach to analyze the convergence rate of the
NLMS algorithm and APA, and we have developed a method of step-sizes generation
that represents the core part of the obtained algorithms: VSS-NLMS and VSS-APA.
The simulations outlined the good performance compared to their forerunners, NLMS
algorithm and APA, considering all perspectives. A remarkable advantage of VSS-
NLMS algorithm and VSS-APA is the robustness during SNR variations, which in a
real-time conversation is a usual use case. While the VSS-NLMS algorithm and VSS-
APA introduce the use of a step-size reset mechanism, their computational complexity
is still the same as for the NLMS algorithm and APA, introducing only a few more
operations. Furthermore, while APA requires a higher projection order P to improve the
performance, the VSS-APA obtains much better performance with a smaller projection
order, which reduces the computational complexity.

The methods developed and presented in this chapter can be used in future algorithms
and to facilitate the performance of any kind of algorithm that implies fixed parameters.
The simulations support that LMSO-W-DR, VSS-NLMS, and VSS-APA are good
candidates for real-time applications, that require a low computational complexity as
well.

15



Chapter 5

Cascaded Adaptive Filters

System identification or tracking capability are not the only problems among the applica-
tions that involve echo cancellation. In real-world applications, the echo path can reach
thousands of coefficients. Therefore, the performance of the algorithm can be affected
in terms of convergence rate, estimates precision, or tracking, but equally important,
the computational complexity increases with the length of the echo path. The literature
provides solutions that imply an adaptive filter with a FIR structure, targetting sparse in
nature echo paths as well. Further, the environment (i.e., echo path) can be characterized
by different properties which can lead to the generation of multiple reflections, that is
another challenge and in real-world applications, it is called the reverberation effect.

In this chapter, approaching a multilinear perspective, we develop solutions to these
complex problems, aiming to minimize the computational complexity, obtain good
performance, and handle the reverberation effect. In order to assess the reverberation
effect from a mathematical point of view, we describe the impulse response using the
Kronecker product decomposition. The development of this chapter is published in [2],
[7], [8].

5.1 Multilinear Structures without Memory

A MISO system can be tailored through the following input-output relationship

y(n) =
L1

∑
l1=1

L2

∑
l2=1

. . .
LN

∑
lN=1

xl1l2...lN (n)h1,l1h2,l2...hN,lN , (5.1)

described by the coefficients hi,li . Further, let us rewrite equation (5.1) as

y(n) =
L1

∑
l1=1

h1,l1 . . .
LN−1

∑
lN−1=1

hN−1,lN−1slN−1(n), (5.3)



where

slN−1(n) =
LN

∑
lN=1

xl1l2...lN (n)hN,lN (5.4)

denotes the output of the Nth MISO structure of LN inputs. Thus, Fig. 5.1(a) depicts
the slN−1 MISO structure with the LN inputs, while Fig. 5.1(b) presents its symbolic
representation which is a memoryless weighted adder.

Fig. 5.1 (a) Representation of the MISO
structure slN−1; (b) The symbolic repre-
sentation of slN−1 (memoryless weighted
adder).

Fig. 5.2 The MISO system of N weighted
adder levels.

Based on (5.3) and considering the symbolic representation from Fig. 5.1(b), we
can sketch the MISO system through the graphical representation from Fig. 5.2, which
encompasses N levels of weighted adders.

5.2 Multilinear Structures with Memory

The transformation of the structure slN−1 into a structure with memory can be achieved
by inserting a delay line, so that we can write

slN−1(n) =
LN

∑
lN=1

xlN−1(n− lN +1)hN,lN , (5.5)

with xl1l2...lN (n) = xlN−1(n− lN +1), lN = 1,2, · · · ,LN .
Consequently, the MISO structure slN−1 becomes a SISO structure and its output is

generated by a transversal FIR filter hN . Proceeding in the same manner on each layer
of the global system, we obtain in the end a cascade of transversal FIR filters, as it is
shown in Fig. 5.6.
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Fig. 5.6 SISO system in cascaded configuration.

5.3 System Model based on Kronecker Product Decom-
position

Considering the system identification framework as before, let us introduce the output of
the MISO system as

y(n) =X (n)×1 hT
1 ×2 hT

2 ×i ...×N hT
N , (5.9)

where hi represents the ith transversal filter from the cascaded depicted in Fig. 5.6, ×i

denotes the multiplication operation by the dimension, i = 1,2, ...,N, and N represents
the multilinear degree.

We can rewrite (5.9) as y(n) = vecT [X (n)]vec(H), where H is a rank-1 tensor of
dimension L1 ×L2 ×·· ·×LN [11][24], or y(n) = x̃T (n)h. The input vector x̃(n) and the
coefficients vector h have L1L2 · · ·LN elements. We can conclude that the multilinear
perspective is translated into a linear problem by the way of processing the input data.

5.4 Z-Transform Analysis

The output of the global system from Fig. 5.6 can be developed to

Y (z) = Sl1(z)H1(z) = X1(z)H2(zL1)H1(z) = X1(z)H(z), (5.24)

where the transfer function H(z) = H2(zL1)H1(z). In this transfer function, we can
outline that H2(zL1) results from the interpolation with zeroes by the L1 factor of the
H2(z) function and is characterized by L2 non-zero coefficients from a total length of
L1(L2 −1)+1 coefficients.

5.5 Cascaded Multilinear NLMS Algorithm

Since the NLMS algorithm is very popular among the adaptive algorithms due to its
simplicity and low computational complexity, let us use it as a workhorse and prove
the cascaded filters approach. In this section, we develop the cascaded multilinear form
NLMS (NLMS-CMF) algorithm by minimizing the MSE cost functions for the cascaded
system.
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5.5.1 Algorithm Development

In this development we obtain the equations of the cascaded multilinear form NLMS
(NLMS-CMF) algorithm

ĥ1(n) = ĥ1(n−1)+
µĥ1

x̃ĥ2ĥ3···ĥN
(n)eĥ2ĥ3···ĥN

(n)

x̃T
ĥ2ĥ3···ĥN

(n)x̃ĥ2ĥ3···ĥN
(n)+δĥ1

,

ĥ2(n) = ĥ2(n−1)+
µĥ2

x̃ĥ1ĥ3···ĥN
(n)eĥ1ĥ3···ĥN

(n)

x̃T
ĥ1ĥ3···ĥN

(n)x̃ĥ1ĥ3···ĥN
(n)+δĥ2

,

...

ĥN(n) = ĥN(n−1)+
µĥN

x̃ĥ1ĥ2···ĥN−1
(n)eĥ1ĥ2···ĥN−1

(n)

x̃T
ĥ1ĥ2···ĥN−1

(n)x̃ĥ1ĥ2···ĥN−1
(n)+δĥN−1

, (5.34)

where δĥi
denotes the regularization parameter for each ĥi filter, i = 1,2, . . . ,N.

5.5.2 Experimental Results

Let us prove the developed structures by running the simulations on two cascaded filters
(ĥ1, ĥ2), i.e., N = 2, which is a cascaded bilinear form NLMS (NLMS-CBF) algorithm.
In these simulations, we consider a system identification scenario, where the unknown
system is characterized by the first echo path from G168 Recommendation [1] padded
with zeroes, L = 512.

In Fig. 5.9 we analyze the tracking capability and the echo path changes at time
7 seconds. We can remark that for µ = µĥ1

= µĥ2
= 1 the NLMS algorithm presents

a slightly faster convergence rate than the NLMS-CBF algorithm when the echo path
changes. However, their normalized misalignment level is the same. On the other hand,
it seems that the step-sizes µ = µ1 = µ2 = 0.1 are too small when the input signal is
correlated. Therefore, an appropriate step-size must be selected.

5.6 Cascaded Multilinear RLS Algorithm

The RLS algorithm is popular due to its good performance in terms of convergence rate,
normalized misalignment level, and tracking capability, being easy to parametrize and use
in practical applications. However, its performance comes with the cost of computational
complexity which is O(L2). Therefore, we aim to provide a solution that uses the benefit
of the cascaded filters approach to reduce the computational complexity and maintain
the good performance of the RLS algorithm, so that to obtain a cascaded multilinear
form RLS (RLS-CMF) algorithm. In this development, we start by minimizing the LS
cost functions for the cascaded system.
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Fig. 5.9 Normalized misalignment of the NLMS-CBF and NLMS algorithms. The input
signal is an AR(1) process, β = 0.8, L = 512, L1 = L2 = L/2, and SNR = 20 dB.

5.6.1 Algorithm Development

Following the same procedure as in Section 2.5, we can identify the update equations of
the cascaded multilinear RLS algorithm as

ĥ1(n) = ĥ1(n−1)+ sĥ2ĥ3···ĥN
(n)eĥ2ĥ3···ĥN

(n),

ĥ2(n) = ĥ2(n−1)+ sĥ1ĥ3···ĥN
(n)eĥ1ĥ3···ĥN

(n),
...

ĥN(n) = ĥN(n−1)+ sĥ1ĥ2···ĥN−1
(n)eĥ1ĥ2···ĥN−1

(n), (5.38)

where sĥ2ĥ3···ĥN
(n),sĥ1ĥ3···ĥN

(n),
...,sĥ1ĥ2···ĥN−1

(n) denote the update terms.

5.6.2 Experimental Results

In this section we aim to compare the performance of the cascaded multilinear RLS
algorithm with that of the RLS algorithm in two different contexts. In the first one we
consider that the unknown system is characterized by the first echo path from the G168
Recommendation [1], while in the second context the echo path is obtained as Kronecker
product between multiple impulse responses [23].

For the first context, let us choose three different degrees of multilinear forms: N = 2,
the bilinear form (BF), N = 3, the trilinear form (TF), N = 4, the quadratic form (QF).
Therefore, we denote the cascaded multilinear RLS algorithm for the chosen degrees as
cascaded BF RLS (RLS-CBF) algorithm, cascaded TF RLS (RLS-CTF) algorithm, and
cascaded QF RLS (RLS-CQF) algorithm.

Next, in Fig. 5.12 the input signal is an AR(1) process with β = 0.85 and the echo
path changes in the middle of the simulation. When the echo path changes, the effect
of the multilinear degree is much visible in terms of the normalized misalignment level.
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Also, it seems that the RLS-CBF algorithm reaches the normalized misalignment level
of the RLS algorithm at some point (e.g., after 5 seconds of simulation).

Fig. 5.12 Normalized misalignment of the RLS-CBF, RLS-CTF, RLS-CQF, and RLS
algorithms. The input signal is an AR(1) process with β = 0.85 and SNR = 20 dB.

Further, we continue the experiments in the second context, where we choose two
different multilinear degrees, N = 2 (bilinear) and N = 3 (trilinear). We denote the
cascaded multilinear RLS algorithm based on the Kronecker product decomposition as
RLS-CKD algorithm.

Let us begin with the simulations of the bilinear form, where the system to be
identified is obtained through the Kronecker product between the first impulse response,
i.e., h1, from the G168 Recommnedation [1] (with L1 = 64) and an exponential impulse
response, h2 (with L2 = 8). The global impulse response is h = h2⊗h1, with L = L1L2 =

512 coefficients.
In Fig. 5.17 the input signal is a speech sequence and the echo path changes in the

middle of the simulation. We can remark that the RLS algorithm achieves a normalized
misalignment level of −20 dB after 7 seconds which is not desirable in a real-time appli-
cation. On the other hand, the RLS-CKD algorithm achieves a normalized misalignment
level of −40 dB in 2 seconds. This time the influence of the M parameter is visible from
the beginning and impacts the converge rate of the RLS-CKD algorithm. However, we
can outline the ease of the RLS-CKD algorithm to determine the new system when the
impulse response changes.

Further, we analyze the performance of the RLS-CKD algorithm in the trilinear
context. The impulse response to be determined is obtained as the Kronecker product
between the first echo path from the G168 Recommendation [1], i.e., h1 (with L1 = 64),
a randomly generated impulse response h2 (with L2 = 8), and an exponential impulse
response h3 (with L3 = 4). In brief, the global system to be identified is h = h3⊗h2⊗h1,
of L = L1L2L3 = 2048 coefficients.

In Fig. 5.20 the input signal is an AR(1) process with β = 0.9 and the echo path is
changing after 4 seconds. We can remark that the RLS-CKD algorithm outperforms the
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Fig. 5.17 Normalized misalignment of the RLS-CKD (L1 = 64, L2 = 8) and classical
RLS (L = 512) algorithms. The input signal is a speech sequence, SNR = 30dB, and the
impulse response changes after 10 seconds of simulation.

RLS algorithm in terms of converge rate, normalized misalignment level, and tracking
capability. This time, the effect of the M parameter on the convergence rate of the
RLS-CKD algorithm is visible from the beginning.

Fig. 5.20 Normalized misalignment of the RLS-CKD (L1 = 64, L2 = 8, L3 = 4) and
classical RLS (L = 2048) algorithms. The input signal is an AR(1) process with β = 0.9,
SNR = 20dB, and the impulse response changes after 4 seconds of simulation.

5.7 Computational Complexity Analysis

The way of splitting a global system into a cascade of smaller systems (in terms of
impulse response length), represents a huge advantage for the computational complexity
reduction. This advantage is more important for those algorithms that present a quadratic
or cubic computational complexity, making them appropriate for applications as indicated
in Table 5.1.
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Table 5.1 Algorithms Computational Complexity Reduction

Algorithm Complexity Operations Example
RLS O(L2) 20482 = 4194304

RLS-CBF ∑
2
i=1 O(L2

i ) 2×10242 = 2097152
RLS-CTF ∑

3
i=1 O(L2

i ) 3×6822 = 1395372
RLS-CQF ∑

4
i=1 O(L2

i ) 4×5122 = 1048576

However, if the impulse response is decomposable through the Kronecker product,
the echo path can be identified through a cascade of shorter length filters and the benefits
in terms of computational complexity are outlined in Table 5.2.

Table 5.2 Algorithms Computational Complexity Reduction through KPD Approach

Algorithm Complexity Operations Example
RLS O(L2) 20482 = 4194304

RLS-CKD (bilinear) ∑
2
i=1 O(L2

i ) 642 +322 = 5120
RLS-CKD (trilinear) ∑

3
i=1 O(L2

i ) 642 +82 +42 = 4176
RLS-CKD (quadratic) ∑

4
i=1 O(L2

i ) 322 +82 +42 +22 = 1108

5.8 Summary and Conclusions

In this chapter, we have introduced a set of structures without and with memory, and
developed a way for splitting a long length filter in a cascade of shorter length filters. We
have proved the theory through experiments and outlined the performance through the
NLMS-CBF, RLS-CBF, RLS-CTF, RLS-CQF algorithms. Also, we have presented an
optimized way to build the input data, which was approached in the context of the echo
paths described through the KPD. We have assesed a particular effect that can be met
in acoustic environments, the reverberation effect, by describing the echo path through
the KPD. We have outlined that the RLS-CKD algorithm is a good candidate to handle
this kind of effect and achieves good performance in terms of converge rate, normalized
misalignment level, and tracking capability. The simulations outlined that the proposed
algorithm outperforms their counterparts versions (i.e., NLMS or RLS algorithms). Also,
we have presented the benefits in terms of computational complexity for a rudimentary
echo path and for an echo path that can be described through KPD.

23



Chapter 6

Conclusions

6.1 Obtained results

The system identification problem is one of the most interesting in the signal processing
field, which raises many challenges nowadays. This thesis provides comprehensive
research in the adaptive filtering field and introduces new algorithms for system identifi-
cation, aiming at both linear and multilinear systems. However, for a better understanding
of the context and to facilitate the connection with the theory, the obtained results were
presented along with the conclusions at the end of each chapter. Therefore, there is
no need to reiterate them here. However, the main contributions are listed in the next
section, outlining the main achievements.

6.2 Original contributions

The original contributions are briefly listed below, specifying the original publication
where the contribution was published. The mention [i], where i is a number, denotes the
listing position in the next section.

Chapter 3

• Development of an optimized LMS algorithm with a variable step-size, the LMSO
algorithm [1];

• Development of an optimized LMS algorithm with a differential step-size, the
ODSS-LMS algorithm [2];

• Development of the simplified versions for the LMSO and ODSS-LMS algorithms;
the LMSO-W and ODSS-LMS-W algorithms, suitable for real-time applications
[1], [2];

• Convergence and stability analysis of the proposed algorithms [1], [2];
• Computational complexity analysis [1], [2];



• Performance analysis of the proposed algorithms, compared to their counterparts
or other recent solutions [1], [2].

Chapter 4

• Improvement of the previously proposed LMSO-W algorithm, by using the data-
reuse technique, obtainining the LMSO-W-DR algorithm [4];

• Theory development to present the connection with APA [4];
• Performance analysis of the LMSO-W-DR [4];
• Development of the variable step-size NLMS (VSS-NLMS) algorithm [7];
• Development of the variable step-size APA (VSS-APA) [8];
• Convergence modes analysis for the VSS-NLMS algorithm and VSS-APA [7],

[8];
• Experimental studies to outline the improvements by using the proposed ap-

proaches [7], [8].

Chapter 5

• Introduced structures without and with memory (MISO or SISO), that ca be
described by a multilinear input-output form [3], [5];

• Starting from the weighted adder-filter structure, development of a way to split a
long length filter into a cascade of shorter length filters, aiming both linear and
multilinear system identification [3], [5];

• An optimized way to build the input data tensor for the identification of multilinear
systems [6];

• Development of the cascaded multilinear NLMS and RLS algorithms [3];
• Theory validation through the cascaded bilinear form NLMS (NLMS-BF) algo-

rithm [3];
• Performance analysis based on the multilinear order [5];
• Experimental study to showcase the identification of a system that is characterized

by the reverberation effect using the proposed RLS-CKD algorithm [6].

6.3 List of original publications

In this section the list of original publications is presented with the corresponding
citations from the References.

[1] A.-G. Rusu, S. Ciochină, and C. Paleologu, “On the Step-Size optimization of
the LMS Algorithm”, 42nd International Conference on Telecommunications and
Signal Processing (TSP), pp. 168–173, 2019 [6] [ISI Proceedings];
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[2] A.-G. Rusu, S. Ciochină, C. Paleologu, and J. Benesty, “An Optimized Differential
Step-Size LMS Algorithm”, Algorithms, 12(8):147, 2019 [9] [ISSN: 1999-4893,
CiteScore - Q2 (Numerical Analysis) ];

[3] A.-G. Rusu and S. Ciochină, “Cascaded adaptive filters in a bilinear approach for
system identification”, International Symposium on Electronics and Telecommuni-
cations (ISETC), pp. 1–4, Nov. 2020 [2] [ISI Proceedings];

[4] A.-G. Rusu, L.-M. Dogariu, S. Ciochină, and C. Paleologu, “A Data-Reuse Ap-
proach for an Optimized LMS Algorithm”, International Conference on Speech
Technology and Human-Computer Dialogue (SpeD), pp. 31–35, 2021 [5] [ISI
Proceedings];

[5] A.-G. Rusu, S. Ciochină, and C. Paleologu, “Cascaded Adaptive Filters in a
Multilinear Approach for System Identification”, International Symposium for
Design and Technology in Electronic Packaging (SIITME), pp. 1–4, Oct. 2021 [7]
[ISI Proceedings];

[6] A.-G. Rusu, S. Ciochină, C. Paleologu, and J. Benesty, “Cascaded RLS Adaptive
Filters Based on a Kronecker Product Decomposition”, Electronics, 11(3):409,
2022 [8] [ISSN: 2079-9292, Q3 - IF - 2.690 ];

[7] A.-G. Rusu, C. Paleologu, J. Benesty, and S. Ciochină, “A Variable Step Size
Normalized Least-Mean-Square Algorithm Based on Data Reuse”, Algorithms,
15(4):111, 2022 [3] [ISSN: 1999-4893, CiteScore - Q2 (Numerical Analysis) ];

[8] A.-G. Rusu, L.-M. Dogariu, R.-L. Costea, C. Paleologu, J. Benesty, and S.
Ciochină, “A Variable Step-Size Affine Projection Algorithm Based on Data
Reuse”, 45th International Conference on Telecommunications and Signal Pro-
cessing (TSP), 2022 [4] [ISI Proceedings].

6.4 Perspectives for further developments

Future works will focus on improving the work of this thesis in the context of linear and
multilinear system identification. Definitely, one of the directions is the development of
a state-of-the-art method to estimate the system’s noise and convert the proposed LMSO
and ODSS-LMS algorithms into nonparametric algorithms. Therefore, the LMSO and
ODSS-LMS algorithms could become general solutions for the identification of any kind
of impulse response. Another path of research is the analysis of the connection between
the LMSO-DR algorithm and APA, exploring new ways to handle the input data.

We aim to extend the way of splitting a long length filter into a cascade of shorter
length filters, to analyze different types of non-linearities that can occur in real-world
applications.
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[2] A.-G. Rusu and S. Ciochină (Nov. 2020). Cascaded adaptive filters in a bilinear
approach for system identification. In International Symposium on Electronics and
Telecommunications (ISETC), pages 1–4.

[3] A.-G. Rusu, C. Paleologu, J. Benesty, and S. Ciochină (2022). A Variable Step Size
Normalized Least-Mean-Square Algorithm Based on Data Reuse. Algorithms, 15(4).

[4] A.-G. Rusu, L.-M. Dogariu, R.-L. Costea, C. Paleologu, J. Benesty, and S. Ciochină
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