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These days we experience a fertile moment for parallel computing, mostly due to advances in

compiler technology, the maturation of mathematical formalisms for it and the popularization of

hardware design.

The major contribution of the thesis is the compilation of sequential C programs for Connex-S,

a competitive, scalable and customizable, wide vector accelerator for intensive embedded applications

with 32 to 4096 16-bit integer lanes and a limited capacity local scratchpad memory. This contri-

bution is well-evidenced in our recent paper Şuşu 2020. The Connex-S processor is designed in our

D.C.A.E. (in Romanian: Dispozitive, Circuite şi Arhitecturi Electronice, meaning Devices, Circuits

and Electronic Architectures) laboratory in the E.T.T.I. (in Romanian: Electronică, Telecomunicaţii

şi Tehnologia Informaţiei, meaning Electronics, Telecommunications and Information Technology)

department at the Politehnica University of Bucharest proposes a promising research an embed-

ded wide vector architecture called Connex-S. The Connex-S accelerator draws its efficiency from

delegating the compiler to extract parallelism by vectorizing scalar code, and to perform explicit

communication in an optimized fashion between the lanes of the processor. Obviously in software

parallelism extraction is considerably better than when it is performed by hardware as it is for ex-

ample the case for superscalar processors. Connex-S is a low-power processor. The reason is that

Single Instruction Multiple Data (SIMD) array or vector architectures, besides being a scalable way

to design parallel architectures C. E. Kozyrakis et al. 2003, they also achieve better energy efficiency

because (i) SIMD (array) processors use considerably fewer resources for the control unit than for

the datapath Waeijen et al. 2015; Şuşu 2019; Patterson et al. 2017, (ii) we delegate the compiler to

extract Instruction Level Parallelism (ILP) instead of the hardware as it is the case for superscalar

processors, and (iii) we can maintain the computational throughput by lowering the frequency and

the supply voltage since we have an increased level of hardware parallelism Chandrakasan et al. 1992.

C. Kozyrakis 2002 states that in a SIMD (array) processor increasing the number of lanes allows

for a decrease in power consumption without changing the peak computational throughput of the

system.
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The number of lanes of the SIMD processor is called width or vector length.

The Connex-S ISA is described in the PhD thesis. But a complete technical document for the

Connex-S ISA is Ştefan 2015.

Any digital processor requires good software development tools to be embraced by the commu-

nity. These tools are the assembler, the compiler for C or C++, the runtime library, and additional

software libraries and frameworks. Ideally, the runtime library contains few elements written man-

ually in assembler by expert programmers such as floating-point emulation or special Operating

System (OS) calls. On the other hand, a C compiler includes all the complex logic to translate

general C code to assembly code. While this is something easy to do nowadays for scalar proces-

sors, auto-vectorization, the compilation for vector processors remains, even after almost 40 years

of research, a difficult task. For example, a lot of non-regular code such as code with complex data

structures, recursive code, or with parallel patterns such as reduction or scan remains difficult to be

auto-vectorized.

Therefore, as a doctoral student, I had to create a decent Connex-S vector runtime library

while developing our Connex-S compiler. The Connex-S compiler uses the state-of-the-art LLVM

compiler Lattner et al. 2004, but since the LLVM compiler itself does not include support for vec-

torization for all possible parallel-patterns such as the scan operator I had to conservatively create

manually optimized vector assembly functions in our runtime library for them and call them explic-

itly in our code. This practice is good for now, but, again, we hope in the next years to be able to

recognize such patterns in our compiler and generate efficient code for them.

The targets of my research were from the beginning: (i) to create an optimizing compiler,

as general as possible for the Connex-S vector processor, together with a good supporting runtime

library; (ii) to propose power and energy optimizations as much as possible in the compiler. I was

able to address energy optimizations only as part of the runtime library, but not in the compiler

because the processor power management infrastructure was difficult to build and there are few,

complex energy-saving optimizations that can be addressed by the compiler.

Since Connex-S is an accelerator loosely integrated with the host it uses a programming model

similar to the OpenCL language called OPINCAA B̂ıră et al. 2013. Therefore, our compiler toolchain

uses the LLVM framework and targets OPINCAA, which is more exactly a Just-In Time (JIT) vector

assembler and coordination C++ library for Connex-S accelerating computations for an arbitrary

CPU. Therefore, we address in the compiler middle end aspects of efficient vectorization, communi-

cation, and synchronization. We perform quantitative static analysis of the program useful, among
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others, for the symbolic-size compiler memory allocator and the coordination mechanism of OPIN-

CAA. By using JIT vector assembling and by encoding the vector length of Connex-S as a parameter

in the generated OPINCAA program, we achieve vector-length agnosticism to support execution on

distinct embedded devices, such as several digital cameras with different resolutions, each equipped

with custom-width Connex-S accelerators meant to save energy for the image processing kernels.

We encourage using a Vector-Length Agnostic (VLA) compiler, mainly because we should design

an embedded system with one or more custom-width Connex-S processors adapted to the frequent

program input sizes to reduce the energy consumption when accelerating any of the following bench-

marks: (i) Basic Linear Algebra Subprograms (BLAS) such as matrix multiplication, (ii) Computer

Vision (CV) transformations or (iii) Deep Neural Networks and other intensive machine learning

tasks. The experiments in Figure 14 from Waeijen et al. 2015 suggest that to save energy, we should

accelerate this type of regular code kernels with wide Connex-S processors with a vector length closest

to the trip count of the vectorized loop. Therefore, in case we manufacture several digital cameras

with different factory established (maximum) resolutions performing various image processing com-

putations such as image noise removal by using a CV convolution transformation on the captured

frames of the corresponding factory size, to save energy we need to employ Connex-S accelerators

with vector lengths close to the frame width.

1. Detailed Description of the Connex-S Compiler

The most challenging steps the compiler needs to perform are data tiling, loop vectoriza-

tion Naishlos 2004; Nuzman et al. 2006 with symbolic quantitative static analysis, and efficient

non-native arithmetic and logical operation emulation in the back end.

We present in Figure 1 a flowchart with the stages of our compiler toolchain together with

details on how we can deploy the resulting C++ program to various embedded platforms with

custom-width Connex-S accelerators. We first determine for our C code what is the size of the vector

kernel compiled from the original C program through simple OPINCAA JIT assembling, the vector

kernel memory footprint, and the loop nest trip counts. We obtain the memory footprint through

static analysis with the LLVM Symbolic Range Analysis (SRA) pass Mendonça et al. 2017. If the

footprint of our program is a constant smaller than the Connex-S scratchpad memory size, normally

256 KB, then we simply provide the original C program to the Connex-S OPINCAA LLVM compiler

and we are done. Otherwise, we require first to apply loop tiling, a standard transformation splitting

a loop in two nested loops, an exterior one called tile loop and an internal one called element (point)

loop, with every element loop processing a smaller interval of iterations than the original one Kennedy
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et al. 2002. In such a case, our next step is to perform optimal data tile size selection using our

Connex-S accelerator cost model such that we minimize the total kernel execution time subject to

fitting larger program data in the Local Storage (LS) memory. Then we employ PPCG, which takes as

input the given source C program and the optimal tile sizes. PPCG applies polyhedral modeling The

Polyhedral Model, http://polyhedral.info 2020 and data dependence analysis to check whether the

requested loop tiling is legal, in which case it generates the transformed C program, which we give

as input to the Connex-S OPINCAA LLVM compiler.

We now present the steps performed in Figure 1 by the OPINCAA LLVM compiler. We parse

the (transformed) C source file with the clang command, the front end, which generates unoptimized

LLVM IR code. The opt command then optimizes the LLVM Intermediate Representation (IR) by

executing the pipeline of middle-end LLVM passes. Next, we run the back end, llc, to generate CPU

assembly instructions and Connex-S vector assembly code. We then replace the vectorized loops in

the source C file with the associated generated OPINCAA kernels and coordination code to obtain the

final OPINCAA program, by using a simple tool we wrote in C++, ReplaceLoopsWithOpincaaKer-

nels. With this last step, we can consider we perform a simple source-to-source transformation, which

makes the code CPU independent. We generate C++ code using the OPINCAA C++ framework.

This allows the vector-length agnostic Connex-S assembler code with CV L-parametric strip-mining

to rely on the OPINCAA JIT assembler, which also reads at runtime the concrete value of the CV L

program environment variable. The resulting C++ OPINCAA program can be compiled with a

standard tool like GCC, preferably at the maximum optimization level for the benefit of the host

code.

Since an LLVM back end must have a scalar CPU processor, not only a vector unit, we create the

Connex-S back end by adding the Connex-S vector instructions to the existing LLVM eBPF (extended

Berkeley Packet Filter) back end. We could start from a more common back end such as the one

for ARM, but since our method discards the CPU assembly code at the end and replaces it with the

non-vectorized original C code, we allow ourselves to use something simpler. eBPF is a simple 64-bit

RISC processor The Linux Kernel Archives 2014, an extension of the BPF architecture McCanne

et al. 1993, normally interpreted by the Linux (or other Unixes) kernel and has the smallest LLVM

back-end implementation in the repository. We add to it vector instructions getting inspired from

the MSA (MIPS SIMD Architecture) vector instructions specified in the LLVM Mips back end.
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Fig. 1. The stages of the Connex-S compiler toolchain. Also, at the right end, we
present examples of deployment to embedded systems with custom-width Connex-S
accelerators with a number of lanes between 32 and 4,096.

Note that in the LLVM IR machine model, the vector unit is tightly-coupled to the CPU,

which runs the sequential LLVM code. However, Connex-S is an accelerator, loosely integrated with

the CPU, with its own separate memory space, so we need to explicitly perform the communica-

tion and synchronization between the two, using OPINCAA’s coordination Application Programming

Interface (API). Therefore, we generate the OPINCAA coordination calls for these the OPINCAA

memory transfers for memory and reduction transfers, execution and synchronization in our LoopVec-

torizeOpincaa module.

We extend LLVM’s standard LoopVectorize module, which automatically transforms, if feasible

and profitable, sequential innermost loops of the input LLVM IR program into vector LLVM IR

code, to implement most (note that we add in the middle-end also the SRA and Loopus passes) new

middle-end functionality:

• (i) a symbolic-size static memory allocator for the Local Storage (LS) memory;

• (ii) generation of optimal, aggregated I/O transfers between the system RAM, and the

Connex-S LS memory (using the methods writeDataToConnexPartial(), readDataFromCon-

nexPartial()), of OPINCAA kernel begin and end primitives, of kernel execution calls and the

reads of the reduction results;

• (iii) the logic to create new appropriate vector reads and writes properly addressing the LS

memory instead of the system RAM;

• (iv) the generation of loop headers and footers inside the Connex-S vector kernel. We have

two alternatives to implement loops in the vector kernels: using host-side C++ for loops

in OPINCAA, which actually completely unroll the body of Connex-S instructions or using

Connex’s hardware loop mechanism.

• (v) to get the start and end lines and columns in the C source file of the loops being vectorized

in order to replace them later with OPINCAA code. For this, we use the ScopeTree class

from the DawnCC compiler distribution Mendonça et al. 2017.
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• (vi) for better performance we also need to reduce the size of the kernel by generating for

the innermost two levels of C loop nests normally an OPINCAA REPEAT loop containing

a host-side C++ for loop (this normally results in a kernel with minimal number of vector

instructions if all the original trip counts are at least CV L), while for simple C loops we

generate only REPEAT. This transformation works if the second innermost loop has basically

no code besides the inner loop aside from e.g. initialization of reduction variables, which

means we can handle only perfectly nested loops Kodukula et al. 1997 with our transformation.

Note that for deeper loop nests we simply leave unchanged the outer loops.

Note that the vectorization of the innermost loop generates a vector.body basic block, but also

prologue in the vector.ph block and epilogue vector code in middle.block, in which we put the last

part of the innermost loop, either an OPINCAA END REPEAT instruction or an inline assembly

pseudo-instruction to end the host-side C++ for loop. We simply collect all this vector code with

the ReplaceLoopsWithOpincaaKernels tool and put it in an OPINCAA kernel. Also, as discussed

previously, for efficiency we generate a compact loop for the second innermost loop if it has no code

besides the inner loop by transforming it to a Connex-S REPEAT loop.

Control divergence due to if-then-else C branches is handled by the LoopVectorizeOpincaa

module, by performing if conversion, which means the control flow of the branches is replaced with

select LLVM vector IR instructions. However, if the structure of the loop to be vectorized is complex,

it is possible that if conversion and vectorization fail in LLVM.

2. Automating the Specification of Lowering Efficiently Non-native Arithmetic and

Logical Operations

Due to the lack of space, we briefly present the most interesting results of the semi-automatic

methodology we employ for the efficient emulation of the non-native LLVM IR operations for types

such as 32-bit integer or 16-bit floating point using our Connex-S OPINCAA LLVM compiler. We

refer the reader to our Section 5.3 of the PhD thesis describing in more detail the aspects of this

section.

The method we propose consists of: i) manually creating optimized OPINCAA vector assembly

kernels we call code templates for the emulation of each of these non-native operations; ii) generating

automatically C++ API code for LLVM’s instruction selection pass, which lowers a non-native

instruction to its respective predefined code template. This achieves efficient emulation of non-native

operations in the sense that the LLVM compiler generates inlined emulation code for a program

with non-native arithmetic operations, optimized by all the standard passes like register allocation
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and Common Subexpression Elimination (CSE) basically starting from the manually optimized code

templates.

For the method to work well we also devise a code generator tool part of the OPINCAA library

with a simple algorithm to automate the specification of LLVM C++ API lowering code in the

instruction selection pass, since manually writing C++ code can be error prone.

3. Optimal Data Tile Size Selection During Compilation

Since Connex-S has a limited capacity local scratchpad memory of 256 KB normally, we present

how we also use the PPCG C-to-C code generator to perform data tiling to minimize the total kernel

execution time, subject to fitting larger program data in the local memory. To compute an optimal

tiling, we first introduce the accurate cost model of our Connex-S embedded accelerator, currently

synthesized in a Xilinx Zynq-7020 FPGA, to determine the total execution time of a tiled routine.

We run at compile time this optimization problem whether the C source program does not have

parametric size arrays for which we cannot infer transfer costs statically. Our work resembles the

one of Lin et al. 2010 that build a similar by principle cost model to achieve optimal tiling for the

IBM Cell processor.

Connex-S has an accurate and simple to calculate cost model if few stalls occur in the system,

which happens for our kernels that get completely vectorized and for which we read efficiently the

reduction results, in blocks of at least a few KB. This is of no surprise since Connex-S is a wide vector

accelerator, with a software-managed scratchpad memory (SPM) instead of caches, which makes vec-

tor execution predictable, with no speculative or out-of-order execution, and we implement Connex-S

inside a Xilinx Zynq-7020 FPGA on Zedboard, a rather simple embedded prototype platform. We

also experience some stalling behavior when the instruction or the reduction FIFO becomes full,

which is under 5% of the total kernel execution time for non-degenerate tilings. Therefore, we per-

form rigorously measurements in many different conditions on the Zedboard and fit our cost model

to have good accuracy.
typedef i n t 1 6 t Type ;

#define N 512
Type A[N ] [ N ] ;
Type B[N ] [ N ] ;
Type C[N ] [ N ] ;

void MatMul BTransposed ( ) {
int i , j , k ;

for ( i = 0 ; i < N; ++i )
for ( j = 0 ; j < N; ++j ) {

C[ i ] [ j ] = 0 ;
for ( k = 0 ; k < N; ++k )

C[ i ] [ j ] += A[ i ] [ k ] ∗
B[ j ] [ k ] ;

}
}

Listing 1. C
source program
for matrix mul-
tiplication

We provide an example of compilation where it is necessary

to perform loop tiling to be able to fit the data accessed in the

Connex-S LS memory of 256 KB. When compiling with the PPCG

tool the simple C function from Listing 1, which we refer to as the

MatMulBT-512 benchmark, implementing the multiplication of two

square matrices of 512×512 elements, with elements of type int16 t,

stored in row-major order, with the second operand transposed to

allow vectorization, we obtain the program in Listing 2.
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i n t 1 6 t A t i l e [ 1 8 2 ] [ 5 1 2 ] ;
i n t 1 6 t B t i l e [ 7 4 ] [ 5 1 2 ] ;
i n t 1 6 t C t i l e [ 1 8 2 ] [ 7 4 ] ;

void MatMul BTransposed ( ) {
#d e f i n e min (x , y ) ( x < y ? x : y )

#i f d e f NOT FOR CONNEX LLVM COMPILER
// The i t i l e loop
for ( int i t = 0 ; i t < 512 ; i t += 182) {

int cal lWriteDataToConnexForFirstArray = 1 ;
// For data reuse in the OPINCAA C++ program

// Copying data from A i n t o A t i l e
for ( int ip = 0 ; ip < min (182 , 512− i t ) ; ip++)

for ( int k = 0 ; k < 512 ; k++)
A t i l e [ ip ] [ k ] = A[ i t + ip ] [ k ] ;

// The j t i l e loop
for ( int j t = 0 ; j t < 512 ; j t += 74) {

// Copying data from B i n t o B t i l e
for ( int jp = 0 ; jp < min (74 , 512− j t ) ; jp++)

for ( int k = 0 ; k < 512 ; k++)
B t i l e [ jp ] [ k ] = B[ j t + jp ] [ k ] ;

#e n d i f
// Continued on r i g h t column

// Continued from l e f t column

//Only t h i s code i s v e c t o r i z e d on Connex−S
for ( int ip = 0 ; ip < min (182 , 512− i t ) ;

ip++) // i po in t loop
for ( int jp = 0 ; jp < min (74 , 512− j t ) ;

jp++) { // j po in t loop
C t i l e [ ip ] [ jp ] = 0 ;
for ( int k = 0 ; k < 512 ; k++)

C t i l e [ ip ] [ jp ] += A t i l e [ ip ] [ k ] ∗
B t i l e [ jp ] [ k ] ;

}

#i f d e f NOT FOR CONNEX LLVM COMPILER
int counter = 0 ;
// Put t ing back data from C t i l e i n t o C
for ( int ip = 0 ; ip < min (182 , 512− i t ) ;

ip++)
for ( int jp =0; jp < min (74 , 512− j t ) ;

jp++)
C[ i t + ip ] [ j t + jp ] = C t i l e [ ip ] [ jp ] ;

} // End of j t t i l e loop
} // End of i t t i l e loop

#e n d i f
}

Listing 2. C program generated by PPCG from Listing 1, simplified for readability,
for tile size vector (182, 74, 512), for a 256 KB Connex-S LS memory

int CONNEX VL;. . .
void MatMul BTransposed ( ) {

// Assuming : CVL in {32 , 64 , 128 , 256 , 512}
#d e f i n e min (x , y ) ( x < y ? x : y )
// The i t i l e loop
for ( int i t = 0 ; i t < 512 ; i t += 182) {

int cal lWriteDataToConnexForFirstArray = 1 ;
// Copying data from A i n t o A t i l e
for ( int ip = 0 ; ip < min (182 , 512− i t ) ; ip++)

for ( int k = 0 ; k < 512 ; k++)
A t i l e [ ip ] [ k ] = A[ i t + ip ] [ k ] ;

// The j t i l e loop
for ( int j t = 0 ; j t < 512 ; j t += 74) {

// Copying data from B i n t o B t i l e
for ( int jp = 0 ; jp < min (74 , 512− j t ) ; jp++)

for ( int k = 0 ; k < 512 ; k++)
B t i l e [ jp ] [ k ] = B[ j t + jp ] [ k ] ;

// Performing data reuse f o r b l o c k A t i l e
i f ( cal lWriteDataToConnexForFirstArray == 1) {

// connexGlobal C++ o b j e c t e n c a p s u l a t e s
// a c c e l e r a t o r f u n c t i o n a l i t y
connexGlobal−>writeDataToConnexPartial ( At i l e ,

/∗ num elems w r i t t e n ∗/
min (182 , 512− i t ) ∗ 512 ,

/∗ LS memory o f f s e t ∗/ 0 ) ;
cal lWriteDataToConnexForFirstArray = 0 ;

}
connexGlobal−>writeDataToConnexPartial ( Bt i l e ,

/∗ num elems w r i t t e n ∗/
min (74 , 512− j t ) ∗ 512 ,

/∗ LS mem o f f s e t ∗/
min (182 , 512− i t ) ∗ 512 / CVL) ;

// The OPINCAA v e c t o r k e r n e l s t a r t s here
BEGIN KERNEL( ” allowRedefine MatMul BTransposed ” ) ;

EXECUTE IN ALL(
R(0) = 0 ;
R(1) = 1 ;
// The i po in t loop
for ( int ip = 0 ; ip < min (182 , 512 − i t ) ;

ip++) {
// Continued on r i g h t column

R(2) = min (182 , 512− i t ) ∗ 512 / CVL;
// B t i l e s t a r t o f f s e t

// Trans la t ion o f j po in t loop jp
REPEAT( min (74 , 512− j t ) ) ;

R(3 ) = ( ip ∗ 512) / CVL;
// v load index f o r A t i l e [ ip ]

R(4) = 0 ; // accumulator

// Vector i zed innermost loop k
// (CVL s t r i p−mined dot product )
for ( int kStr ipmine = 0 ; kStr ipmine < 512 ;

kStr ipmine += CVL) {
// Read A t i l e [ ip ] [ ∗ ] v e c t o r

R(5) = LS [R( 3 ) ] ;
R(3 ) += R( 1 ) ;

// Read B t i l e [ jp ] [ ∗ ] v e c t o r
R(6) = LS [R( 2 ) ] ;
R(2 ) += R( 1 ) ;
R(6) ∗ R( 5 ) ; R(5) = MULTLO( ) ;
// Accumulate ( f o r dot prod )
R(4) += R( 5 ) ;

}
RED R( 4 ) ; // compute C t i l e [ ip ] [ jp ]

// End of t r a n s l a t i o n o f j po in t loop jp
ENDREPEAT;
} // end of i po in t loop ip

) ;
END KERNEL( ” allowRedefine MatMul BTransposed ” ) ;

connexGlobal−>executeKerne l (
” allowRedefine MatMul BTransposed ” ) ;

connexGlobal−>readCorrectReduct ionResu l t s ( Ct i l e ,
min (182 , 512− i t ) ∗ min (74 , 512− j t ) ,

s izeof ( i n t 1 6 t ) ) ;

// Put t ing back data from C t i l e i n t o C
int counter = 0 ;
for ( int ip = 0 ; ip < min (182 , 512− i t ) ;

ip++)
for ( int jp = 0 ; jp < min (74 , 512− j t ) ;

jp++)
C[ i t+ip ] [ j t+jp ] =

∗(& C t i l e [ 0 ] [ 0 ] + ( counter ++));

} // end of j t i l e loop j t
} // end of i t i l e loop i t

}

Listing 3. Simplified excerpt of the OPINCAA program generated by the Connex-S
LLVM compiler from Listing 2

This C program from Listing 2, with loops tiled optimally s.t. the data fits correctly in the

Connex-S LS memory and the program achieves the smallest execution time is then compiled with
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the Connex-S OPINCAA LLVM compiler. We present in Listing 3 the final program containing

OPINCAA coordination and vector assembly code.

Note that in Listing 1 we do not express the size of the matrix encoded as a C variable because

it makes the problem tractable at compile time.

We obtain from the SRA pass invoked in our LoopVectorizeOpincaa LLVM module, once we

have an idea what are the vector and coordination operations for our OPINCAA program, that the

memory footprint of the loop nest in this function is 1,048,576 bytes. This indeed is the size of the

two input matrices A and B. The reason we do not also include here the result matrix C is that

Connex-S employs for efficiency the sum-reduction hardware functional unit to execute the vectorized

innermost loop performing dot product, and the reduction result is sent directly to the CPU without

being stored in the LS memory.

Our simple brute-force search algorithm returns an optimal performance tile size vector of (182,

74, 512). In this vector, we associate the sizes from left to right: for the outermost loop i with a tile

size of 182 to the innermost loop k with a tile of 512 elements. In this case, the last size implies that

we do not perform any tiling on loop k.

PPCG generates auxiliary arrays Atile, Btile to completely fit in 256 KB data from the original

arrays A and B, respectively, before the actual multiplication code. Then, our Connex-S LLVM

compiler generates after the input data copies into tiles and before executing the kernel the blocking

writeDataToConnexPartial() I/O transfers from these tile arrays to Connex-S with an amount of data

computed with the SRA pass—see Listing 3. Similarly, the Ctile array is copied at the end of the jt

for loop to the right locations of the result matrix C, which is orchestrated with the fact LLVM adds

later a readCorrectReductionResults() call immediately before this tile copy. Interestingly, PPCG

places the copies from matrix A to array Atile outside the jt for loop, which achieves optimal data

reuse in the sense that the same data block Atile is being reused for all possible values of Btile.

We explain now a few notations in the OPINCAA kernel in Listing 3: R(0) refers to the Connex-

S vector register 0, while LS[R(3)] denotes for each lane the value stored at the address in the LS

memory indicated by the respective element of R(3). The two C++ for loops in the assembly vector

kernel, ip and kStripmine, allow OPINCAA to completely unroll at runtime the assembly code

contained in their body. The OPINCAA Connex-S kernel name has the allowRedefine prefix since

we redefine the kernel and assemble it on the CPU for 21 times during the program execution. The

kernel starts being executed on the accelerator only when the CPU enters executeKernel(). Then,

the blocking readCorrectReductionResults() method waits for min(182, 512 − it) · min(74, 512 − jt)

results from the reduction unit of Connex-S, which we use to update the corresponding elements of
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matrix Ctile. This number of reduction results is computed in this example, as in other cases, by

multiplying the trip counts of the two outermost point loops, but we plan to use in the near future

the Loopus tool to support more general cases. Note that we do not store Ctile in the LS memory,

because we compute every element of the array with the Connex-S sum-reduction hardware unit and

sent directly to the CPU in the right order.

We stress that the assembly kernel is vector-length agnostic since we perform JIT assembling

and CV L-parametric strip-mining with the kStripmine for loop, which completely unrolls the code

inside its body. We can see the OPINCAA Connex-S vector code uses the C/C++ expression

(ip ∗ 512)/CV L as a symbolic scalar immediate operand assigned to R(3), which the assembler

translates at runtime to a concrete value.

Note that the tiled C code from Listing 2 has some problems to compile with LLVM because of

the min operators, being presented as such for readability. The reason is both the SRA algorithm and

the OPINCAA kernel caching do not support min as a loop bound. More exactly: (i) we can consult

this limitation of the SRA algorithm in Nazaré et al. 2014; and (ii) if the OPINCAA kernel contains

min then caching the kernel binary stream at the first execution is unsound since the value returned

by the min operator can change in a subsequent run, resulting in different kernel instructions than the

ones cached. To address this issue we perform with PPCG a sort of loop unswitching transformation

to the code in Listing 2, in which we duplicate the i point (ip) loop, each copy receiving one operand

of the min operator as loop upper bound and being executed conditionally based on the value of

the predicate 182 < 512 − it. When compiling with the Connex-S LLVM compiler, each new ip

loop becomes part of a new OPINCAA tile kernel with its own I/O calls. Similarly, we apply this

transformation for the jp REPEAT loop. We do not present these corrected versions of the tiled C

program or the OPINCAA C++ code due to lack of space, which also implies that Listing 3 does

not perform kernel caching.

We also recommend consulting the simpler example of compilation without tiling of the program

SumReduce from Şuşu 2019.

4. Experiments

We now present some meaningful benchmarks used, for example, in high performance and

computer vision embedded applications, which our C optimizing compiler handles and evaluate the

performance of the code generated for the Connex-S accelerator.

For experiments, we use a Zedboard development platform with the Xilinx Zynq-7020 SoC

(System on a Chip), with an ArchLinux 1.4 distribution with Linux kernel 3.14.0, and GCC 8.3.0
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for ARM. The Connex-S compiler toolchain extends LLVM 8.0 from March 2019 together with a

LoopVectorize pass from LLVM 3.8 from Jul 2016, and PPCG with version 0.08.2. The OPINCAA

library is available for download at the link in the reference DCAE 2019.

We present in Figure 2 the performance speedups of a few benchmarks written in C when

running on a Connex-S accelerator with 128 lanes and a local SPM memory of 256 KB for program

data, synthesized on the Xilinx Zynq-7020 FPGA, clocked at 100 MHz w.r.t. the dual-core ARM

Cortex A9 processor integrated into the Zynq SoC, at 667 MHz, equipped with an 8-stage superscalar

pipeline with 128-bit Neon SIMD support. While for Connex-S we use our OPINCAA LLVM com-

piler, for Cortex A9 we employ ARM GCC 8.3.0, and for both toolchains, we specify the maximum

optimization level.

All the benchmarks employ arrays with elements of native type i16, but also of emulated types

i32 and f16, where appropriate. The benchmarks perform: dot product (DotProd) on arrays of 64K

i16 or f16 elements, or 32K i32 elements; sum-reduction of population counts of words (CtPop-Reduce)

on an array of 128K elements of type i16—we do not run it also on i32, since it is an emulated type,

less efficient on Connex-S; matrix multiplication (MatMulBT-128/170/256/512/1024) for operands

of sizes 128×128, 170×170, 256×256, 512×512 and 1024×1024, the second matrix being already

transposed to allow vectorization; MatMul-128, which also performs matrix transposition coded

manually in vector assembler instead of the C language on the second input operand before the

computation previously described for MatMulBT-128 to follow the BLAS standard; Sum of Squared

Differences (SSD) and Sum of Absolute Differences (SAD), standard functions used for example in

computer vision for the SIFT feature detection technique or for motion estimation Bocchino et al.

2006, compute statistics for all pairs of two groups of 2048 collections of 128 elements of type i16, i32,

or f16; covariance-128 and correlation-128 are two benchmarks from the PolyBench suite Pouchet

2014 computing the covariance and correlation of 128 data points, each with 128 attributes of type

f16; filter2D-1024 performs a CV convolution transformation on a frame of 1, 024×768 pixels, with a

correlation kernel of size 15 × 15, being used to remove noise from images or to detect image features

or edges.

The kernels DotProd, CtPop-Reduce, MatMulBT-256.i16/f16 have input data of exactly 256

KB, the size of the SPM memory, while MatMulBT-128/170, MatMul-128, covariance-128, and

correlation-128 have less. However, the kernels MatMulBT-256.i32, MatMulBT-512/1024, SSD-128,

SAD-128, and filter2D-1024 have a memory footprint larger than the SPM, so we tile them optimally.

We do not have loop tiling transformations for the programs running directly on ARMv7, since ARM
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GCC 8.3.0 offers little support for them. Even more, ARM’s speculative hardware prefetcher is poor,

not suitable for tiling.

The MatMulBT-128/170/256.i16/i32/f16 benchmarks are actually implemented by the same

C source function accepting two input and one output matrices of size N×N , represented as 2D

variable-length arrays, a feature available in C99 and newer standards of the C language. However,

in case we have to perform tiling for matrices of size 512×512 or 1, 024×1, 024, we currently cannot

use this parametric size kernel, mainly because the loop trip counts are not known at compile time

so we cannot compute an optimal tiling statically. Also, the DotProd and CtPop-Reduce kernels take

input data of parametric size, but we provide pointers as input instead of 1D variable-length arrays

and, also, we do not need to tile the data because it is fitting the SPM.

For the i16 benchmarks, we observe that we cannot accelerate the DotProd kernel, because

it has a small arithmetic intensity, and the memory transfers to Connex-S become predominant.

However, the other i16 kernels achieve good acceleration, also in part because GCC 8.3.0 does not

vectorize for ARM Neon our i16 tests, which happens because it deems unprofitable the vectorization

sum-reductions and multiplications of vectors. Notice that the MatMulBT-170 benchmark for types

i16 and f16 has a smaller speedup than the similar MatMulBT-128/256 benchmarks, because we pad

with 86 zero elements each row of each input matrix to make them both of size 170×256 to avoid

performing partial reductions. We also note the speedup of the SAD-128 kernel is greater than the

one of SSD-128, because ARM’s branch predictor often misses when computing the absolute value,

since the input data are random.
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Most of the i32 benchmarks achieve a subunitary speedup because of the big complexity of the

i32 operations emulated on Connex-S and because GCC vectorizes programs with i32 type for ARM.

To be able to accelerate these i32 benchmarks on Connex-S, we should make it wider: For example,

MatMulBT-512.i32 on a Connex-S with 512 lanes should achieve a speedup factor of 1.9, which is

about three times better than for 128 lanes.

We must not also neglect that the architectural speedup, which is the improvement of the

number of cycles executed, in our case is greater than the reported speedups in Figures 2 and 3

basically by a factor of 6.67, given the frequencies of the CPU and the Connex-S processor are 667

and 100 MHz.

We experience a decent acceleration of the f16 benchmarks because ARMv7 does not support

the f16 type natively either, so it has to convert it to f32 to perform native operations and then

revert to f16, and these conversion operations have a big cost. A less important reason is the fact

GCC 8.3.0 cannot vectorize floating-point operations for ARM Neon.

For these benchmarks, writing consecutively two blocks of 128 KB from the system RAM to the

LS memory takes 1.265 ms. Also, to assemble an OPINCAA kernel takes an amount of time in the

range 0.01–134.6 ms, the kernel MatMulBT-256.f16 achieving the maximum with 308 Kinstructions.

To amortize this overhead we cache the binary instruction stream we dispatch to Connex-S, for the

same input data sizes, when running the kernel many times—100 or 1,000 times in our experiments.

We also can precompute the binary stream of a kernel before the actual run, but such procedure is

complicated and normally does not bring a serious advantage over caching when we run the kernel

many times.

The generated vector assembler code is optimal for most benchmarks, except for MatMulBT-

128.i16, SSD-128.i16, and SAD-128.i16, for which we can achieve 1.072, 1.072, and 1.049, respec-

tively, times more speedup. For this, we need to avoid performing an unnecessary vector add

strip-mining accumulation (see Listing 3) for dot-product calculation, since the trip count of the vec-

torized loop, 128, is equal in our experiments with CV L, the vector length of Connex-S. Similarly,

for MatMulBT-128.f16, SSD-128.f16, and SAD-128.f16 we take out the vector add.f16, which is

time-consuming, because the assembler vector code has 500–700 instructions, and we achieve 1.66x,

1.4x, and 1.6x, respectively further speedup. We plan to add this optimization in the compiler re-

moving the vector add accumulation in the future. MatMulBT-170/256 cannot benefit from this

optimization since the trip count of the innermost loop is different than CV L. The benchmarks

MatMulBT-128.i32, SSD-128.i32, and SAD-128.i32 cannot be optimized because the accumulation

is performed actually on vectors of 64 i32 elements so each dot-product performs two accumulations.
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We can run the same generated C++ OPINCAA program on systems with Connex-S accelera-

tors of different vector lengths since the number of lanes is an OPINCAA program environment vari-

able, CV L, and we perform JIT vector assembling. In Figure 3, we present the speedups achieved by

the generated OPINCAA programs when running on Connex-S processors of different vector lengths.

In fact, since the CPU execution times does not vary with CVL, these graphs show the variation of

the execution time on Connex-S when CVL varies. Note the experiments with 256, 512, and 1,024

lanes are performed with the Connex-S OPINCAA simulator since the Xilinx Zynq-7020 FPGA

cannot accommodate these large Connex-S processor designs. We see how the performance of the

benchmarks varies when increasing the vector length of the accelerator. This trend is not linear but

asymptotic, especially visible for MatMulBT-1024, due to the big communication I/O overhead and

the impossibility to speedup when increasing CV L the prologue and the epilogue of the vectorized

loop. Note that for MatMulBT-128/256/512 the speedup is stagnating after 128, 256, and 512 lanes,

respectively, since the trip count of the respective vectorized loop becomes smaller than the vector

length, and the rest of the lanes remain unused.

5. Optimized Code Generation of Computer Vision Transformations using Sparse

Matrices

Modern computer vision image transformations can benefit from sparse input data in complex

pipelines. However, such routines are difficult to implement efficiently with sparse matrices.

Therefore, we propose a compiler for a Domain-Specific Language (DSL) that computer vision

specialists can use. The tool reads a mathematical function describing a transformation, relating the

input and output image pixels, together with a generic C code template, and generates from them an

efficient C implementation using sparse matrices. The compiler perform a novel code optimization to

increase performance such that we traverse inorder the input sparse image. For this our DSL compiler

needs to perform symbolic mathematical optimization on the equations of the function specifying

the transformation inorder to invert the function.

We use our DSL compiler to help us develop the sparse version of a computer vision pipeline

performing image alignment. We achieve an average sequential performance increase of 8.32 times

on an x86 CPU at 2.66 GHz when using sparse matrices in various useful computer vision routines

than when using dense images.

Also, we can accelerate some of these computations on our Connex-S wide vector processor

achieving a minor performance increase w.r.t. just running on a CPU. However, we look to improve
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performance by using a simple block sparse matrix representation starting from the observation that

the sparse data in the frame is represented, by disks with radius of 2.5 (or 3) pixels.

The end goal with this chapter besides documenting an interesting and simple mathematical

way to execute efficiently sparse matrix stencil or map McCool et al. 2012 CV computations starting

from DSL specifications is to also show that such computations can be well accelerated on the Connex-

S processor. We include these computations as part of our Connex-S runtime library, leaving their

compilation from C to Connex-S as future work.
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